3.5.71 \(\int \frac {\cot (e+f x)}{\sqrt {a-a \sin ^2(e+f x)}} \, dx\) [471]

Optimal. Leaf size=31 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a \cos ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f} \]

[Out]

-arctanh((a*cos(f*x+e)^2)^(1/2)/a^(1/2))/f/a^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 31, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3255, 3284, 65, 212} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a \cos ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]/Sqrt[a - a*Sin[e + f*x]^2],x]

[Out]

-(ArcTanh[Sqrt[a*Cos[e + f*x]^2]/Sqrt[a]]/(Sqrt[a]*f))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3255

Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(a*cos[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0]

Rule 3284

Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFact
ors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[x^((m - 1)/2)*((b*ff^(n/2)*x^(n/2))^p/(1 - ff*x)
^((m + 1)/2)), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2
]

Rubi steps

\begin {align*} \int \frac {\cot (e+f x)}{\sqrt {a-a \sin ^2(e+f x)}} \, dx &=\int \frac {\cot (e+f x)}{\sqrt {a \cos ^2(e+f x)}} \, dx\\ &=-\frac {\text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a x}} \, dx,x,\cos ^2(e+f x)\right )}{2 f}\\ &=-\frac {\text {Subst}\left (\int \frac {1}{1-\frac {x^2}{a}} \, dx,x,\sqrt {a \cos ^2(e+f x)}\right )}{a f}\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {a \cos ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 49, normalized size = 1.58 \begin {gather*} \frac {\cos (e+f x) \left (-\log \left (\cos \left (\frac {1}{2} (e+f x)\right )\right )+\log \left (\sin \left (\frac {1}{2} (e+f x)\right )\right )\right )}{f \sqrt {a \cos ^2(e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]/Sqrt[a - a*Sin[e + f*x]^2],x]

[Out]

(Cos[e + f*x]*(-Log[Cos[(e + f*x)/2]] + Log[Sin[(e + f*x)/2]]))/(f*Sqrt[a*Cos[e + f*x]^2])

________________________________________________________________________________________

Maple [A]
time = 5.46, size = 40, normalized size = 1.29

method result size
default \(-\frac {\ln \left (\frac {2 \sqrt {a}\, \sqrt {a \left (\cos ^{2}\left (f x +e \right )\right )}+2 a}{\sin \left (f x +e \right )}\right )}{\sqrt {a}\, f}\) \(40\)
risch \(\frac {2 \ln \left ({\mathrm e}^{i f x}-{\mathrm e}^{-i e}\right ) \cos \left (f x +e \right )}{f \sqrt {\left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )^{2} a \,{\mathrm e}^{-2 i \left (f x +e \right )}}}-\frac {2 \ln \left ({\mathrm e}^{i f x}+{\mathrm e}^{-i e}\right ) \cos \left (f x +e \right )}{f \sqrt {\left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )^{2} a \,{\mathrm e}^{-2 i \left (f x +e \right )}}}\) \(104\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)/(a-a*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/a^(1/2)*ln((2*a+2*a^(1/2)*(a*cos(f*x+e)^2)^(1/2))/sin(f*x+e))/f

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 54 vs. \(2 (26) = 52\).
time = 0.29, size = 54, normalized size = 1.74 \begin {gather*} -\frac {\log \left (\frac {2 \, \sqrt {-a \sin \left (f x + e\right )^{2} + a} \sqrt {a}}{{\left | \sin \left (f x + e\right ) \right |}} + \frac {2 \, a}{{\left | \sin \left (f x + e\right ) \right |}}\right )}{\sqrt {a} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a-a*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

-log(2*sqrt(-a*sin(f*x + e)^2 + a)*sqrt(a)/abs(sin(f*x + e)) + 2*a/abs(sin(f*x + e)))/(sqrt(a)*f)

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 84, normalized size = 2.71 \begin {gather*} \left [-\frac {\sqrt {a \cos \left (f x + e\right )^{2}} \log \left (-\frac {\cos \left (f x + e\right ) + 1}{\cos \left (f x + e\right ) - 1}\right )}{2 \, a f \cos \left (f x + e\right )}, \frac {\sqrt {-a} \arctan \left (\frac {\sqrt {a \cos \left (f x + e\right )^{2}} \sqrt {-a}}{a}\right )}{a f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a-a*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/2*sqrt(a*cos(f*x + e)^2)*log(-(cos(f*x + e) + 1)/(cos(f*x + e) - 1))/(a*f*cos(f*x + e)), sqrt(-a)*arctan(s
qrt(a*cos(f*x + e)^2)*sqrt(-a)/a)/(a*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\cot {\left (e + f x \right )}}{\sqrt {- a \left (\sin {\left (e + f x \right )} - 1\right ) \left (\sin {\left (e + f x \right )} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a-a*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(cot(e + f*x)/sqrt(-a*(sin(e + f*x) - 1)*(sin(e + f*x) + 1)), x)

________________________________________________________________________________________

Giac [A]
time = 0.44, size = 32, normalized size = 1.03 \begin {gather*} \frac {\arctan \left (\frac {\sqrt {-a \sin \left (f x + e\right )^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a-a*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

arctan(sqrt(-a*sin(f*x + e)^2 + a)/sqrt(-a))/(sqrt(-a)*f)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\mathrm {cot}\left (e+f\,x\right )}{\sqrt {a-a\,{\sin \left (e+f\,x\right )}^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e + f*x)/(a - a*sin(e + f*x)^2)^(1/2),x)

[Out]

int(cot(e + f*x)/(a - a*sin(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________